
Cheat Sheet: Algorithms for Supervised- and Unsupervised Learning 1

Algorithm Description Model Objective Training Regularisation Complexity Non-linear Online learning

k-nearest
neighbour

The label of a new point x̂ is classified
with the most frequent label t̂ of the k
nearest training instances.

t̂ = argmax
C

�

i:xi∈Nk(x,x̂)

δ(ti, C)

• Nk(x, x̂) ← k points in x
closest to x̂

• Euclidean distance formula:��D
i=1(xi − x̂i)2

• δ(a, b) ← 1 if a = b; 0 o/w

No optimisation needed.
Use cross-validation to learn the appropriate k; otherwise no
training, classification based on existing points.

k acts as to regularise the classifier: as k → N the
boundary becomes smoother.

O(NM) space complexity, since all
training instances and all their
features need to be kept in memory.

Natively finds non-linear boundaries. To be added.

Naive Bayes

Learn p(Ck|x) by modelling p(x|Ck)
and p(Ck), using Bayes’ rule to infer
the class conditional probability.
Assumes each feature independent of
all others, ergo ‘Naive.’

y(x) = argmax
k

p(Ck|x)

= argmax
k

p(x|Ck)× p(Ck)

= argmax
k

D�

i=1

p(xi|Ck)× p(Ck)

= argmax
k

D�

i=1

log p(xi|Ck) + log p(Ck)

No optimisation needed.

Multivariate likelihood p(x|Ck) =
�D

i=1 log p(xi|Ck)

pMLE(xi = v|Ck) =

�N
j=1 δ(tj = Ck ∧ xji = v)

�N
j=1 δ(tj = Ck)

Multinomial likelihood p(x|Ck) =
�D

i=1 p(wordi|Ck)
xi

pMLE(wordi = v|Ck) =

�N
j=1 δ(tj = Ck)× xji

�N
j=1

�D
d=1 δ(tj = Ck)× xdi

. . . where:

• xji is the count of word i in test example j;
• xdi is the count of feature d in test example j.

Gaussian likelihood p(x|Ck) =
�D

i=1 N (v;µik, σik)

Use a Dirichlet prior on the parameters to obtain a
MAP estimate.

Multivariate likelihood

pMAP(xi = v|Ck) =

(βi − 1) +
�N

j=1 δ(tj = Ck ∧ xji = v)

|xi|(βi − 1) +
�N

j=1 δ(tj = Ck)

Multinomial likelihood

pMAP(wordi = v|Ck) =

(αi − 1) +
�N

j=1 δ(tj = Ck)× xji
�N

j=1

�D
d=1 (δ(tj = Ck)× xdi)−D +

�D
d=1 αd

O(NM), each training instance must
be visited and each of its features
counted.

Can only learn linear boundaries for
multivariate/multinomial attributes.

With Gaussian attributes, quadratic
boundaries can be learned with uni-modal
distributions.

To be added.

Log-linear

Estimate p(Ck|x) directly, by
assuming a maximum entropy
distribution and optimising an
objective function over the
conditional entropy distribution.

y(x) = argmax
k

p(Ck|x)

= argmax
k

�

m

λmφm(x, Ck)

. . . where:

p(Ck|x) =
1

Zλ(x)
e
�

m λmφm(x,Ck)

Zλ(x) =
�

k

e
�

m λmφm(x,Ck)

Minimise the negative log-likelihood:

LMLE(λ,D) =
�

(x,t)∈D
p(t|x) = −

�

(x,t)∈D
log p(t|x)

=
�

(x,t)∈D

�
logZλ(x)−

�

m

λmφm(x, t)

�

=
�

(x,t)∈D

�
log

�

k

e
�

m λmφm(x,Ck) −
�

m

λmφm(x, t)

�

Gradient descent (or gradient ascent if maximising
objective):

λn+1 = λn
− η∆L

. . . where η is the step parameter.

∆LMLE(λ,D) =
�

(x,t)∈D
E[φ(x, ·)]− φ(x, t)

∆LMAP(λ,D, σ) =
λ

σ2
+

�

(x,t)∈D
E[φ(x, ·)]−

�

(x,t)∈D
φ(x, t)

. . . where
�

(x,t)∈D φ(x, t) are the empirical counts.

For each class Ck:
�

(x,t)∈D
E[φ(x, ·)] =

�

(x,t)∈D
φ(x, ·)p(Ck|x)

Penalise large values for the λ parameters, by
introducing a prior distribution over them (typically
a Gaussian).

Objective function

LMAP(λ,D, σ) = argmin
λ



− log p(λ)−
�

(x,t)∈D
log p(t|x)





= argmin
λ



− log e
(0−λ)2

2σ2 −

�

(x,t)∈D
log p(t|x)





= argmin
λ




�

m λ2
m

2σ2
−

�

(x,t)∈D
log p(t|x)





O(INMK), since each training
instance must be visited and each
combination of class and features
must be calculated for the
appropriate feature mapping.

Reformulate the class conditional distribution
in terms of a kernel K(x, x�), and use a
non-linear kernel (for example
K(x, x�) = (1 +wT x)2). By the Representer
Theorem:

p(Ck|x) =
1

Zλ(x)
eλ

T φ(x,Ck)

=
1

Zλ(x)
e
�N

n=1
�K

i=1 αnkφ(xn,Ci)
T φ(x,Ck)

=
1

Zλ(x)
e
�N

n=1
�K

i=1 αnkK((xn,Ci),(x,Ck))

=
1

Zλ(x)
e
�N

n=1 αnkK(xn,x)

Online Gradient Descent: Update the
parameters using GD after seeing each
training instance.

Perceptron

Directly estimate the linear function
y(x) by iteratively updating the
weight vector when incorrectly
classifying a training instance.

Binary, linear classifier:

y(x) = sign(wT x)

. . . where:

sign(x) =

�
+1 if x ≥ 0
−1 if x < 0

Multiclass perceptron:

y(x) = argmax
Ck

wTφ(x, Ck)

Tries to minimise the Error function; the number of
incorrectly classified input vectors:

argmin
w

EP (w) = argmin
w

−

�

n∈M
wT xntn

. . . where M is the set of misclassified training
vectors.

Iterate over each training example xn, and update the
weight vector if misclassification:

wi+1 = wi + η∆EP (w)

= wi + ηxntn

. . . where typically η = 1.

For the multiclass perceptron:

wi+1 = wi + φ(x, t)− φ(x, y(x))

The Voted Perceptron: run the perceptron i times
and store each iteration’s weight vector. Then:

y(x) = sign

�
�

i

ci × sign(wT
i x)

�

. . . where ci is the number of correctly classified
training instances for wi.

O(INML), since each combination of
instance, class and features must be
calculated (see log-linear).

Use a kernel K(x, x�), and 1 weight per
training instance:

y(x) = sign

�
N�

n=1

wntnK(x, xn)

�

. . . and the update:

wi+1
n = wi

n + 1

The perceptron is an online algorithm
per default.

Support

vector

machines

A maximum margin classifier: finds
the separating hyperplane with the
maximum margin to its closest data
points.

y(x) =
N�

n=1

λntnx
T xn + w0

Primal

argmin
w,w0

1

2
||w||

2

s.t. tn(w
T xn + w0) ≥ 1 ∀n

Dual

L̃(∧) =
N�

n=1

λn −

N�

n=1

N�

m=1

λnλmtntmxT
nxm

s.t. λn ≥ 0,
N�

n=1

λntn = 0, ∀n

• Quadratic Programming (QP)

• SMO, Sequential Minimal Optimisation (chunking).

The soft margin SVM: penalise a hyperplane by the
number and distance of misclassified points.

Primal

argmin
w,w0

1

2
||w||

2 + C
N�

n=1

ξn

s.t. tn(w
T xn + w0) ≥ 1− ξn, ξn > 0 ∀n

Dual

L̃(∧) =
N�

n=1

λn −

N�

n=1

N�

m=1

λnλmtntmxT
nxm

s.t. 0 ≤ λn ≤ C,
N�

n=1

λntn = 0, ∀n

• QP: O(n3);

• SMO: much more efficient than
QP, since computation based
only on support vectors.

Use a non-linear kernel K(x, x�):

y(x) =
N�

n=1

λntnx
T xn + w0

=
N�

n=1

λntnK(x, xn) + w0

L̃(∧) =
N�

n=1

λn −

N�

n=1

N�

m=1

λnλmtntmxT
nxm

=
N�

n=1

λn −

N�

n=1

N�

m=1

λnλmtntmK(xn, xm)

Online SVM. See, for example:

• The Huller: A Simple and
Efficient Online SVM, Bordes
& Bottou (2005)

• Pegasos: Primal Estimated
sub-Gradient Solver for SVM,
Shalev-Shwartz et al. (2007)

k-means

A hard-margin, geometric clustering
algorithm, where each data point is
assigned to its closest centroid.

Hard assignments rnk ∈ {0, 1} s.t.
∀n

�
k rnk = 1, i.e. each data point is

assigned to one cluster k.

Geometric distance: The Euclidean
distance, l2 norm:

||xn − µk||2 =

����
D�

i=1

(xni − µki)2

argmin
r,µ

N�

n=1

K�

k=1

rnk||xn − µk||
2
2

. . . i.e. minimise the distance from each cluster centre
to each of its points.

Expectation:

rnk =

�
1 if ||xn − µk||

2 minimal for k
0 o/w

Maximisation:

µ(k)
MLE =

�
n rnkxn�
n rnk

. . . where µ(k) is the centroid of cluster k.

Only hard-margin assignment to clusters. To be added.

For non-linearly separable data, use kernel
k-means as suggested in:

Kernel k-means, Spectral Clustering and
Normalized Cuts, Dhillon et al. (2004).

Sequential k-means: update the cen-
troids after processing one point at a
time.

Mixture of

Gaussians

A probabilistic clustering algorithm,
where clusters are modelled as latent
Guassians and each data point is
assigned the probability of being
drawn from a particular Gaussian.

Assignments to clusters by specifying
probabilities

p(x(i), z(i)) = p(x(i)
|z(i))p(z(i))

. . . with z(i) ∼ Multinomial(γ), and

γnk ≡ p(k|xn) s.t.
�k

j=1 γnj = 1. I.e.
want to maximise the probability of
the observed data x.

L(x, π, µ,Σ) = log p(x|π, µ,Σ)

=
N�

n=1

log

�
K�

k=1

πkNk(xn|µk,Σk)

�

Expectation: For each n, k set:

γnk = p(z(i) = k|x(i); γ, µ,Σ) (= p(k|xn))

=
p(x(i)|z(i) = k;µ,Σ)p(z(i) = k;π)

�K
j=1 p(x

(i)|z(i) = l;µ,Σ)p(z(i) = l;π)

=
πkN (xn|µk,Σk)�K
j=1 πjN (xn|µj ,Σj)

Maximisation:

πk =
1

N

N�

n=1

γnk

Σk =

�N
n=1 γnk(xn − µk)(xn − µk)T�N

n=1 γnk

µk =

�N
n=1 γnkxn

�N
n=1 γnk

The mixture of Gaussians assigns probabilities for
each cluster to each data point, and as such is
capable of capturing ambiguities in the data set.

To be added. Not applicable.

Online Gaussian Mixture Models. A
good start is:

A View of the EM Algorithm that Jus-
tifies Incremental, Sparse, and Other
Variants, Neal & Hinton (1998).

1Created by Emanuel Ferm, HT2011, for semi-procrastinational reasons while studying for a Machine Learning exam. Last updated May 5, 2011.

http://eferm.com
http://www.comlab.ox.ac.uk/teaching/courses/2010-2011/machinelearning/

